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A B S T R A C T

Context: In recent years, software environments such as the cloud and Internet of Things (IoT) have become
increasingly sophisticated, and as a result, development of adaptable software has become very important. Self-
adaptive software is appropriate for today's needs because it changes its behavior or structure in response to a
changing environment at runtime. To adapt to changing environments, runtime verification is an important
requirement, and research that integrates traditional verification with self-adaptive software is in high demand.
Objective: Model checking is an effective static verification method for software, but existing problems at run-
time remain unresolved. In this paper, we propose a self-adaptive software framework that applies model
checking to software to enable verification at runtime.
Method: The proposed framework consists of two parts: the design of self-adaptive software using a finite state
machine and the adaptation of the software during runtime. For the first part, we propose two finite state
machines for self-adaptive software called the self-adaptive finite state machine (SA-FSM) and abstracted finite
state machine (A-FSM). For the runtime verification part, a self-adaptation process based on a MAPE (mon-
itoring, analyzing, planning, and executing) loop is implemented.
Results: We performed an empirical evaluation with several model-checking tools (i.e., NuSMV and
CadenceSMV), and the results show that the proposed method is more efficient at runtime. We also investigated
a simple example application in six scenarios related to the IoT environment. We implemented Android and
Arduino applications, and the results show the practical usability of the proposed self-adaptive framework at
runtime.
Conclusions: We proposed a framework for integrating model checking with a self-adaptive software lifecycle.
The results of our experiments showed that the proposed framework can achieve verify self-adaptation software
at runtime.

1. Introduction

Nowadays, various software platforms (e.g., smartphone operating
systems, cloud environments, Arduino, Raspberry Pi, and web-based
applications) are available. As a result, various software applications
depending on platforms such as the cloud and Internet of Things (IoT)1

have become widespread. Furthermore, rapid advancements in mobile
and IoT devices have led to a demand in software systems that can
operate in various environments. Hence, self-adaptive software is soft-
ware that changes its behavior or structure in a changing environment
at runtime [1]. Self-adaptive software satisfies the current need for
software that can operate in various environments. Verification is one

of the most important tasks for self-adaptive software, and it needs to be
performed at runtime [1]. To viably support runtime verification, the
integration of traditional verification with self-adaptive software is
preferable [2,3]. Model checking is an effective static verification
method for software and is governed by the state-based model [4].
Despite excellent verification performance, model checking incurs a
problem at runtime: state explosion [5]. Therefore, model checking
needs to be integrated in the self-adaptation lifecycle during runtime
verification.

There are several studies [6–13] on state machines and model
checking in self-adaptive software. On one hand, some studies [6–8]
apply state machines and model checking to self-adaptive software
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design and evaluation. Such methods are useful during design-time
verification and post-processing for evaluating self-adaptive software,
but they have limitations when applied at runtime for verification. On
the other hand, some studies [10–12] apply probabilistic model
checking to verify self-adaptive software at runtime and use an inter-
active state machine (ISM) to verify self-adaptive software that suffers
from uncertainty. An ISM is a state machine that can interactively up-
date its model and requirements in response to environment changes.
We assume that the runtime environment of self-adaptive software is
not predictable, and therefore, an ISM is more suitable for verifying
self-adaptive software at runtime. However, previous studies on ISMs
have only been optimized to solve uncertainty problems. Therefore, in
this study, we propose a finite state model to design and verify self-
adaptive software.

In this paper, to resolve the above design and verification issues, we
propose two types of finite state machines for the design and verification
of self-adaptive software. Furthermore, we propose a self-adaptive fra-
mework called RINGA (Runtime verIfication with fiNite state machine
desiGn for self-Adaptation software) using the two types of finite state
machines. RINGA consists of two parts: the design-time part is re-
sponsible for the design of finite and abstract-state machines for perfor-
mance at runtime, and the runtime part consists of a MAPE (Monitoring-
Analyzing-Planning-Executing) loop that analyzes the environment with
the abstract state machine extracted from the design-time part. We per-
formed an empirical evaluation using symbolic model checking tools,
and our results show that the proposed method can be used to perform
verification at runtime. Furthermore, we implemented an Android and
Arduino application with an IoT-based example application in six sce-
narios to measure the adaptability of the proposed framework.

The remainder of the paper is organized as follows. Section 2 pro-
vides background on self-adaptive software and work related to run-
time model checking for self-adaptive software. Section 3 introduces
the proposed framework. Section 4 presents the empirical evaluation.
Section 5 presents the results of experiments with a simple IoT-based
example application. Section 6 discusses the limitations of the proposed
approach and extensions that could overcome these limitations.
Section 7 provides the concluding remarks and discusses future work.

2. Related work

In this section, we introduce various self-adaptive frameworks and
platforms, as well as previous studies on the verification requirements
in self-adaptive software research. We summarize previous research
and compare it with RINGA in Table 1. Details regarding the various
studies are described in subsections on the frameworks, platforms, and
verification of self-adaptive software.

2.1. Self-adaptive software frameworks

As mentioned earlier, to adapt to changing environments at run-
time, self-adaptive software dynamically changes its behavior or
structure [1]. Therefore, self-adaptive software detects the state of an
environment and changes its behavior or structure if possible when its
aim has been violated [1]. That is, self-adaptive software monitors its
environment and analyzes the situation and environment to adapt to
any changes. To accomplish this, the MAPE loop mechanism was pro-
posed [1,14–16] and implemented in several self-adaptive software and
autonomic computers. A MAPE loop consists of four parts:

• Monitoring: responsible for collecting and correlating data from the
environment and internal software changes.

• Analyzing: responsible for analyzing the symptoms related to si-
tuation changes using the monitored data.

• Planning: determines the adaptive strategies, i.e., is responsible for
determining what is to be changed and how.

• Executing: responsible for activating the adaptive strategies. Ta
bl
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As described above, the MAPE loop contains the general process of
self-adaptive software and autonomic computing. Therefore, several
self-adaptive software frameworks have been constructed using this
loop [1,7,9–12,17–21].

To construct self-adaptive software, various self-adaptive software
frameworks have been developed recently, and these frameworks each
have their own aspects and distinct characteristics [1,7,9–12,17–21].
For example, Rainbow [19] supports self-adaptation using reusable
infrastructure and software architecture. This framework monitors the
properties of a running system and evaluates architecture models to
find constraint violations. This framework uses external adaptation
mechanisms to adapt to multiple system concerns. Similarly, INVEST
(Incremental VErification STrategy) [9] uses components to describe
software, and this framework adapts by adding, removing, or modifying
the components. This framework verifies its status using incremental
verification by component model checking; it also guarantees the ver-
ification using probabilistic results. Knauss et al. [21] proposed a self-
adaptive framework to cope with uncertainty in contextual require-
ments at runtime called ACon. ACon is designed using the MAPE loop
and updates contextual requirements using data mining and machine
learning (i.e., rule-based classifiers) at runtime.

In addition, there are goal model-based frameworks [7,17]. Talla-
baci and Silva Souza [17] designed an adaptive system from the per-
spective of requirements engineering and feedback loop called Zanshin.
This framework is designed based on requirements using a goal model
[22] and verifies software by checking the fulfillment of the goal model.
If a sub-goal is violated, Zanshin executes the related adaptive strategy.
Furthermore, State of the Affairs (SOTA) [7] is a goal-oriented mod-
eling framework that designs self-adaptive software using a goal model,
and then translates the goal model into a state-based model. The
translated state-based model is used to verify software.

There are other state-based frameworks similar to SOTA [6,12,13].
Tesei et al. [6] proposed a multi-level finite state machine that is
classified into two types of adaptations: structural (i.e., related to ar-
chitectural reconfiguration) and behavioral (i.e., related to functional
changes). Structural adaptation is an upper-level adaptation, where the
lower level (i.e., the behavioral level) is modeled as a state machine and
the upper level is modeled as a second-order state machine. Using such
multiple levels, this framework's upper model verifies constraint vio-
lations at lower models. Yang et al. [13] proposed a state machine
model for verifying self-adaptive applications that involve uncertainty
in environmental interactions. The researchers called the proposed state
model the ISM, and it is based on a probabilistic state machine. This
framework conducts verification using counter-examples prioritized
according to ISM probabilities. Filieri et al. [12] proposed a discrete-
time Markov chain model that has a checking-based framework for self-
adaptive software. This framework provides static verification condi-
tions for evaluating environments at runtime. In addition, it provides
sensitivity analysis by reasoning about the changes of effectors and
extracts adaptation strategies.

In this paper, we follow the MAPE loop at runtime, similar to pre-
vious research. MAPE applies model-checking techniques to verify self-
adaptive software. There are various methods for designing self-adap-
tive software, as described in this section. We assume that finite state
machines are useful for designing self-adaptive software and for ver-
ification at runtime using model-checking techniques [4]. Therefore,
the proposed framework builds two types of finite state machines: one
is responsible for designing the software and the other is responsible for
performing verification at runtime. The proposed framework is de-
scribed in detail in Sections 3.1 and 3.2.

2.2. Self-adaptive software platforms

There are various platforms for performing or simulating self-
adaptive software. Web-based platforms are widely used in self-adap-
tive studies [9–12,18,19], and they are classified into two types: server-

client-based [10–12,19] and cloud service-based [9, 18]. In these stu-
dies, the platforms are implemented and simulated. To prove adapt-
ability with web-based platforms, the proposed method is compared
with a non-adaptive implementation [9] and other non-adaptive
methods [10–12] or case studies [18,19]. Some studies are related to
solving car traffic [23] and parking [7] problems. Car traffic and
parking platforms cannot be easily implemented in the real world, and
thus simulations are performed to prove adaptability.

Some studies have their own platforms, such as eco-systems [6],
automated teller machines [17], robot cars [13], service-based systems
[24], and activity scheduling systems for the sport of rowing in un-
predictable environments (i.e., ToTEM) [21]. In such cases, studies
focus on simulating software in the real world [13,21], simulating
software based on case studies [17], or verifying compatibility using
scenarios [6,24] to show adaptability. Overall, previous studies have
used independent platforms and proved their adaptability through
reasonable experiments. One of the problems of self-adaptive fields is
that there are no prototypical applications that researchers can use to
evaluate or compare new methods [23,24]. To solve this problem,
studies have provided common scenarios, simulation tools, and proto-
types [18,23,24]. However, such studies are rarely employed because
there are various aspects to self-adaptive software, and these aspects
depend on the platform.

In this paper, we aim to support runtime verification for finite state
machines while considering devices with low computing power. To
execute the proposed method in the real world, we devised a simple
IoT-based platform (Section 5). This simple platform demonstrates the
adaptability of the proposed framework in six scenarios (Section 5.3).

2.3. Verification of self-adaptive software

Runtime verification is an important requirement of self-adaptive
software [1–3]. Previous studies on roadmaps [2] suggest that tradi-
tional verification and validation techniques need to be integrated into
the self-adaptation software lifecycle. Model checking is a verification
and validation technique that can be adapted to the self-adaptive
software lifecycle. Furthermore, model checking enables runtime ver-
ification because this method can support verification and investigative
mechanisms [1,2]. However, model checking has limitations when used
for runtime verification because of its inherent problems, such as state
explosion [1,2,4,5]. Therefore, model checking has been modified for
the self-adaptive software lifecycle. Studies have applied state machines
or model checking to self-adaptive software with different aspects and
uses [6–13].

Moreover, there are studies that apply model checking to self-
adaptive software during the design phase for evaluating the software
at design time [6–8]. Tesei et al. [6] proposed a multiple-level state
machine for self-adaptive software called the S[B]-system that is ver-
ified by model checking to confirm the designed self-adaptive software.
Abeywickrama and Zambonelli [7]. developed a state machine as a
goal-oriented model and used this state model (i.e., SOTA) to analyze
and design self-adaptive software. This research verified the SOTA
model for self-adaptive software analysis during the early stages of the
self-adaptive software lifecycle. Cámara and De Lemos [8] applied
probabilistic model checking to evaluate self-adaptive systems. This
research collects data and creates a probabilistic model using the data.
Using the results of probabilistic model checking, they provide levels of
confidence with regard to service delivery. These studies apply model
checking and state machine to self-adaptive software design and eva-
luation. However, the former are optimized during pre- and post-pro-
cesses, and thus not suitable for runtime verification.

In addition, some studies have applied state machines and model
checking at runtime for self-adaptive software. Yang et al. [13] pro-
posed a state machine model to verify self-adaptive software that suf-
fers from uncertainties in the environment called ISM. This model is
verified at runtime, and it generates counter examples that are
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prioritized according to their probabilities. Johnson et al. [9] used
probabilistic automata to verify self-adaptive software called INVEST.
INVEST verifies the designed probabilistic automata to reverify the
probabilistic safety properties of cloud-based software. Some studies
[10–12] have proposed a framework that uses probabilistic model
checking to verify self-adaptive software at runtime. The probabilistic
model is precomputed and translated as a function of the expression
used to verify software at runtime. These studies apply probabilistic
state machines [9–12] or condition-based models [13]. We assume that
the probabilistic approach has inherent problems because an en-
vironment's conditions are not predictable by self-adaptive software at
runtime. Therefore, we propose modeling environment conditions
based on finite state machines for the design and verification of self-
adaptive software (Section 3.2.1). As mentioned earlier in this section,
model checking has inherent problems [1,2,4], and thus we refer to
previous studies that use precomputed state machines [10–12]. The
proposed framework extracts a runtime model (i.e., A-FSM) from a
designed software model (i.e., SA-FSM) for runtime verification
(Section 3.2.2). The runtime model is verified with a MAPE loop at
runtime. The details of the proposed framework are provided in
Section 3.

3. RINGA: self-adaptive software framework with runtime
verification

We propose a self-adaptive software framework called RINGA for
performing runtime verification using the finite state machine-based
model checking. Section 3.1 presents an overview of RINGA, which
consists of preprocessing with a finite state machine and a MAPE loop.
Section 3.2 explains how to design a finite state machine for the pro-
posed framework. Details on runtime verification with a MAPE loop are
provided in Section 3.3.

3.1. Overview

The MAPE loop is an adaptation process mechanism for self-adap-
tive software [1,14–16]. As mentioned in Section 2.1, this closed-loop
mechanism consists of four processes: monitoring, analyzing, planning,
and executing. In this paper, we propose a self-adaptive software fra-
mework based on the MAPE loop. Fig. 1 shows an overview of the
proposed framework, which consists of two parts: design-time and
runtime.

The design-time part is responsible for designing a finite state ma-
chine model, extracting data to be monitored during the runtime phase,
and abstracting the processes of the designed model. We propose rules
for the finite state machine for self-adaptive software. The finite state
machine has four state types: normal, satisfied, dissatisfied, and adap-
tive and two transition types: normal and adaptive. We call this finite
state machine a SA-FSM. After designing the SA-FSM, it is evaluated to
check that the model satisfies requirements and follows SA-FSM rules.
This correctness evaluation process is important because if the designed
SA-FSM is incorrect, it can incorrectly execute the adaptive strategy or
not adapt to an unexpected event. If the designed SA-FSM is incorrect,
the design of the finite state machine model is repeated. After the
evaluation process, monitoring data and triggers are extracted.
Monitoring data are related to the environment or software changes
during software implementation, and triggers are factors for changing
the software. After extracting the monitoring data and triggers, the
designed SA-FSM is abstracted for runtime verification as an A-FSM.
Model checking is a reliable method for verifying software, but it re-
quires a significant amount of computing resources. Therefore, we
present an abstraction algorithm for abstracting SA-FSM in the defini-
tion of A-FSM by applying state elimination algorithms [25]. The ab-
straction algorithm is executed once if there is no change in the SA-
FSM; this prevents any impact at runtime. Consequently, after the de-
sign process is complete, the proposed framework produces an A-FSM

based on the predesigned SA-FSM. The A-FSM is transferred to the
runtime part and used for analysis in runtime verification. Furthermore,
the A-FSM is used to evaluate the condition of a self-adaptive software
in each cycle of MAPE loop at runtime. Details of the design-time
process are further described in Section 3.2.

The runtime part consists of the MAPE loop mechanism, as depicted
in Fig. 1. During the monitoring process, the values of the monitored
data and trigger statuses are checked. Next, the analysis process cal-
culates the equations that are described as transitions of the A-FSM.
This process only calculates the equations, rather than model checking.
Thus, it can be performed more rapidly than previous model-checking
methods at runtime (Section 4.2). The A-FSM determines the prob-
ability that the software can adapt to the changing environment. Sub-
sequently, the planning process selects a predefined adaptive strategy
accordingly. In the planning process, an adaptive strategy is determined
for each result that requires adaptation. The execution process imple-
ments the adaptive strategy selected in the planning process. The
adaptive strategies activate triggers that can also adapt to changes in
the environment. These trigger data are defined at design-time. The
executing process modifies the trigger values to adapt to a changing
environment. After execution, the monitoring process is executed again
and the MAPE loop iterates. Furthermore, if the designed A-FSM can no
longer adapt to the environmental changes and if there is time to design
a new SA-FSM, the runtime part can request a model update from the
design part. When a model update is requested, the predefined SA-FSM
is redesigned to adapt to the environment changes to which the pre-
vious A-FSM failed to adapt. After the SA-FSM is redesigned, the eva-
luation, extraction, and abstraction processes are executed once, and
the resultant A-FSM is transferred to the runtime part. Note that the
redesigning of SA-FSM is only possible for systems where the time re-
quired to produce a new SA-FSM is acceptable.

In this study, we assume that the software should be implemented
with reference to the designed model (SA-FSM and A-FSM). This means
that each state is implemented in the software as a module (e.g., as an
individual function). More specifically, each state needs to be im-
plemented individually so that there is no interference between states.
The proposed approach requires that each state be activated in-
dependently. In addition, transitions involve values to be monitored at
runtime and triggers to activate adaptive strategies. Therefore, if the
software and environment are changed, then the related transitions
values in the SA-FSM change. In addition, if transitions related to the
trigger value are changed in the SA-FSM, the triggers are activated in
the software. In other words, the SA-FSM and software influence each
other at runtime. To summarize, the proposed MAPE loop attempts to
determine the situation so that it may adapt using simplified finite state
model (i.e., A-FSM), which is extracted from the finite state machine
generated for the self-adaptive software (i.e., SA-FSM). In the loop, if
the A-FSM results show that there is a need to adapt to a changing
environment, the software changes the triggers that cause it to adapt to
the environment.

3.2. RINGA design-time process

In this section, we describe the design-time part of the proposed
framework. Section 3.2.1 explains the rules for designing the SA-FSM.
Section 3.2.2 explains how to abstract the SA-FSM to derive the A-FSM
using state elimination rules.

3.2.1. SA-FSM design
We describe self-adaptive software as a finite state machine. The

reason for this is to facilitate the reconstruction and verification when
adaptation is required. As mentioned previously, we assume that self-
adaptive software consists of modules responsible for performing a
single operation (e.g., searching for connectable devices or connecting
devices using Bluetooth networks). Therefore, a state can be described
as a software module. We also assume that a transition operation is by
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monitored data or operation conditions. In summary, self-adaptive
software operates according to the status of the related finite state
machine. Self-adaptive software changes its behavior when it needs to
adapt. Moreover, if a self-adaptive software program is described by a
finite state machine, and each module matches with the corresponding
states, reconstruction of the self-adaptive software is then realized by
simply changing the transitions of the finite state machine.
Furthermore, it is possible to add or delete a software module simply by
modifying a state of the finite state machine if the module is matched
with the state. In this case, we can reconstruct self-adaptive software by
adding or deleting transitions and modules. In addition, by describing
software as a finite state machine, we can apply various model-checking
techniques to verify the self-adaptive software; this becomes even more
significant because demand for practical verification at runtime has
increased with regard to self-adaptive software. In this paper, to de-
scribe self-adaptive software, we propose the finite state machine called
SA-FSM is a tuple (S, →, S0, AP, L) where,

• S is a set of states,

• S consists of four subsets: {Snormal, Ssat, Sdis, Sadaptive}⊆S,

• → ⊆ S× S is the transition relationship, and it is classified into two
types: →normal and →adaptive

• →adaptive ⊆ {Sdis× Sadaptive},

• S0⊆S is a set of initial states,

• AP is a set of atomic propositions, and

• L: S→2AP is a labeling function (2AP denotes the power set of AP).

As represented by the tuple definition, SA-FSM consists of four sets
of states and two transition types. The state sets are as follows:

• Normal state (Snormal): a set of states that do not impact software
adaptation.

• Satisfied state (Ssat): the set of end states for which the software
requirements are satisfied.

• Dissatisfied state (Sdis): the set of end states for which the software
requirements are not satisfied. This type of state needs to be adapted
for, and thus, after this state is entered, an adaptation trigger is
required.

• Adaptive state (Sadaptive): set of states for which the adaptive activity
is performed. If the software reaches this state, the related adaptive
strategy is triggered.

The transition types are as follows:

• Normal transition (→normal): a normal transition that does not im-
pact software adaptation. Some normal transitions need to be
monitored at runtime.

• Adaptive transition (→adaptive): an adaptation trigger. When the
software reaches a dissatisfied state, it checks the operating condi-
tions of the related adaptive transition. If the corresponding condi-
tion is available, the related adaptive strategy is triggered.

For the overall process of the proposed framework, the self-adaptive
software is designed by the SA-FSM during the first process of the de-
sign-time part (Section 3.1). A simplified model, A-FSM, is abstracted
from SA-FSM. This simplified model is used to evaluate software con-
dition in each MAPE loop. In other words, the design of SA-FSM is used
at each MAPE loop (i.e., an A-FSM involves the design of an SA-FSM).
Therefore, if the software reaches Ssat, a MAPE loop cycle is terminated,
satisfying the software requirements. In addition, if the software
reaches Sdis, a MAPE loop cycle is terminated, dissatisfying the software
requirements; the software needs to be adapted accordingly. In this
manner, the design of SA-FSM and A-FSM is used to validate the self-
adaptive software in the MAPE loop at runtime. In Section 5.2.1, we
describe an example that uses SA-FSM with a self-adaptive light control.
In the next section, we introduce how to abstract a designed SA-FSM in
the form of an A-FSM for verification at runtime.

3.2.2. A-FSM for runtime verification
After designing the SA-FSM, it is abstracted in the form of a sim-

plified finite state machine (i.e., A-FSM) for verification at runtime. In
this section, we explain the reason for changing an SA-FSM into an A-
FSM, and how to perform this abstraction. As mentioned earlier, model
checking is a powerful tool for verifying software. Furthermore, model
checking can detect a violation of requirements and provide the cause.
However, model checking has limitations such as state explosion when

Fig. 1. Overview of RINGA.
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used for runtime verification. Therefore, to apply model checking to
self-adaptive software, the proposed framework performs precomputing
to abstract the SA-FSM in the form of the equations (i.e., one of the A-
FSM transitions) so that the software can be analyzed quickly with low
computing power at runtime. Abstracting the SA-FSM requires a con-
siderable amount of computing power. However, by performing this
precomputation, the proposed framework can analyze the system status
simply by calculating the equations at runtime. The A-FSM definition
and abstraction algorithm are described below.

A-FSM is a tuple (S, →, s0, AP, L), where

• S is a set of states,

• S is classified into four types of subsets, {Sstart, Ssat, Sdis, Sadaptive}⊆S,

• → is the set of transitions, and {→A-FSM, →trigger}⊂→,

• →A-FSM ⊆ {Sstart× Sdis, Sstart× Ssat} is the transition relationship,

• →trigger ⊆ {Sdis× Sadaptive},

• s0 ⊆ Sstart is the initial state,

• AP is a set of atomic propositions, and

• L: S→2AP is a labeling function (2AP denotes the power set of AP).

There are four types of states in A-FSM; in other words, Ssat, Sdis, and
Sadaptive are the same for A-FSM and SA-FSM. There is an initial state in
A-FSM that is included in Sstart. Every transition starts at s0 and is di-
rectly connected to Ssat or Sdis. The A-FSM transitions indicate a path
from s0 to the connected Ssat or Sdis states based on the extracted SA-
FSM, and such transitions are expressed in the form of equations that
consist of SA-FSM transitions and mathematical operators. If A-FSM
reaches a state in Ssat, a requirement has been satisfied. However, if A-
FSM reaches Sdis, the software has failed to satisfy a requirement.
Therefore, every Sdis state is connected to at least one Sadaptive state, and
if A-FSM reaches Sdis, the connected trigger performs the adaptive
strategies associated with it.

A-FSM transitions are calculated at runtime in the proposed fra-
mework. If the A-FSM results show that there is a transition to reach
Sdis, the self-adaptive software needs to adapt because reaching Sdis
indicates that it is likely that some requirements have not been sa-
tisfied. Therefore, the purpose of extracting A-FSM from SA-FSM is to
find every reachable path from S0 to Ssat or Sdis. The purpose of this
extraction is presented below using the intuitive semantics of temporal
modalities [4].

Let m= (S, →, S0, AP, L) be a SA-FSM, and Path(δ) denote a path to
satisfy temporal modalities δ. First,

= ⋃ ∃ ♦φ Path S i( ( ))sati (1)

Here, Ssat(i) is the i-th state of Ssat. Notation ◇ indicates “even-
tually” (i.e., now or eventually in the future), and ∃ indicates that there
exists at least one. Therefore, ∃◇Ssat(i) presents the existing path to
reach the i-th state of Ssat, if such a path exists. In addition, Path
{∃◇Ssat(i)} denotes a path to reach the i-th state of Ssat. Finally, φi is a
union of the existing paths from s0 to Ssat(i); thus, φi denotes the set of
all reachable paths from s0 to the i-th state of Ssat. Next,

= ⋃ ∃ ♦ω Path S j( ( ))j dis (2)

Here, Sdis(j) is the j-th state of Sdis. Similar to Eq. (1), ωj is a union of
the existing paths from s0 to the j-th state of Sdis; thus, ωj denotes the set
of all reachable paths from s0 to Sdis.

The transition of A-FSM using φ and ω is given by

→ = … …− φ φ ω ω{{ }, { , , }}A PSM 1 n 1 m (3)

In Eq. (3), set Ssat contains n states, and set Sdis contains m states. In
addition, →A-FSM is a pair of φi and ωj, and it indicates the set of all the
reachable paths to reach a state that is an element of Ssat or Sdis. Finally,
→A-FSM represents the set of all reachable paths from s0 to the states of
Ssat and Sdis.

3.2.3. SA-FSM to A-FSM
In this section, we describe how to obtain A-FSM from SA-FSM. We

revise the state elimination algorithm [25] to abstract SA-FSM in the
form A-FSM. In brief, SA-FSM is changed into a tree data structure to
extract the paths to reach Ssat and Sdis. After extracting these paths, the
tree is transformed into equations (i.e., →A-FSM of A-FSM). Fig. 2 lists
the pseudo-code of the abstraction algorithm. The input of the ab-
straction algorithm is an SA-FSM and its output is an A-FSM. To abstract
an SA-FSM into an A-FSM, two loops are needed (lines 6 to 10 and 11 to
16). These loops repeat for each Ssat and Sdis state (lines 6 and 11). In
these loops, the A-FSM transitions are extracted from the input SA-FSM
(lines 7 to 8 and 12 to 13). To extract A-FSM transitions, the paths to
reach Ssat and Sdis are extracted as a tree structure (line 7 and 12). After
extracting the tree structure, it is translated as an equation (lines 8 and
13). The extracted equation implies φ (Eqs. (1)) or ω ((2)) because both
equations include all reachable paths to reach Ssat or Sdis. After ex-
traction, the equation is added to the output A-FSM as transition (lines
9 and 14). This process implies Eq. (3), because the equation represents
the set of all reachable paths to Ssat and Sdis. Unlike the first loop,

Fig. 2. Pseudo-code of the RINGA abstraction algorithm.
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Sadaptive states are added to the output A-FSM in the second loop
(line15) because the Sdis states are connected with Sadaptive states (i.e.,
via →trigger) by the definition of A-FSM. After all loops, the output A-
FSM is returned (line 17). Next, we describe the details of the algorithm
to extract an A-FSM transition (lines 7 to 8 and 12 to 13).

Fig. 3 shows the pseudo-code of the SA-FSM path-extracting algo-
rithm. This algorithm is one step of the A-FSM extraction (i.e., lines 7
and 12 in Fig. 2) and returns a tree structure that contains the paths to
reach the input state. At the beginning of the algorithm, the input state
is set as the root node of a tree structure (line 6), and the loop repeats
until there is no connected incoming transition (lines 7 to 15). In other
words, the loop terminates when all incoming states are initial states,
duplicated states, or no state. In the loop, if the connected state is an
initial state, it adds the initial state and its transition as a leaf node of
the tree structure (lines 8 to 9). If the connected state is a duplicate state
(e.g., the state is already added to the tree), the loop deletes one branch
related to the duplicated state to prevent iterations, e.g., the loop de-
letes the duplicated branch (lines 10 to 11). In addition, if the con-
nected state is not only an initial state, but also duplicated state (line
12), the loop adds a state and transition to the tree (line 13) and also
adds the incoming transitions of the added state to extract the paths to
reach the initial state (line 14). When adding a connected state in the
loop, if there is single incoming state, it is added as a child node, and if
there are multiple incoming states, they are added as siblings to that
child. Therefore, sibling nodes indicate that there are multiple paths to
reach the input state. After the loop, the tree contains reachable paths
from the initial state to the input state, and the final tree is returned
(line 16).

After the path extraction algorithm, the returned tree structure is
transformed into an equation form (i.e., →A-FSM of A-FSM) (lines 8 and
13 in Fig. 2). Fig. 4 shows the pseudo-code of the algorithm to trans-
form the tree structure into the A-FSM transition. Input of this algo-
rithm is a tree structure (i.e., lines 8 and 13 in Fig. 2), and the output is
an A-FSM transition. The A-FSM transition algorithm consists of a loop
that repeats until every node of the input tree is visited (lines 6 to 11). If
a node has a sibling relationship, its transition is converted as an ad-
dition (+ ) or “or” (||) operation because the sibling relationship im-
plies that there is another path to reach the state (lines 7 to 8). In ad-
dition, if a node has one node, its transition is converted into a
multiplication (*) or “and” (&&) operation because, if one node cannot
be reached, the remaining nodes are not reachable as well (lines 9 to
10). After the loop, an A-FSM transition that consists of a combination

of several transitions is generated, and the A-FSM transition is returned
(line 12).

To better understand the extraction of an A-FSM transition, we
describe the abstraction algorithm with a simple SA-FSM as depicted in
Fig. 5. Here, the SA-FSM example consists of a satisfied state (state 5), a
dissatisfied state (state 3), an adaptive state (state 6), and three normal
states (states 0, 1, and 2). In addition, the SA-FSM contains an adaptive
transition (transition g), and seven normal transitions.

As mentioned earlier, the A-FSM transitions indicate a path for
reaching Ssat or Sdis states to verify whether the self-adaptive software
satisfies or does not satisfy the requirements at runtime. We need a path
to reach the Ssat or Sdis states of SA-FSM, and thus the abstraction al-
gorithm starts at Ssat or Sdis and moves back to the initial state s0. In
Fig. 5, there are two abstraction starting points, states 3 and 5. In the
SA-FSM example, we demonstrate abstraction algorithm for state 3.
This starting point state is located at the root node of the tree structure
(line 11 in Fig. 2). After setting the root node, the tree expands its
children recursively (the algorithm in Fig. 3). A node can have children
such that the transition is directly connected to SA-FSM. In the example,
states 1 and 2 are the child node of node 3, and their branch values are
d and c (i.e., line 12 in Fig. 3). However, if the edge is connected
iteratively, it cannot be a child node because we want to extract paths
to reach Ssat or Sdis, and iterations result in duplicate paths. Further-
more, considering such iterations could result in the state explosion
problem. Therefore, if an iteration appears when expanding the tree,
the exploration of the related states stops (line 10 in Fig. 3). Never-
theless, the tree structure expands when it reaches initial state s0 (line 8

Fig. 3. Pseudo-code of extracting path from SA-FSM.

Fig. 4. Pseudo-code for the tree structure to A-FSM transitions transform algorithm.

Fig. 5. Simple SA-FSM example.
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in Fig. 3). The right side of Fig. 6 shows the tree structure transformed
from the finite state machine example after the iterations have been
eliminated. On left side of Fig. 6, leaf nodes 1 and 2 have a parent with
the same name; therefore, these two nodes should be deleted.

After converting the SA-FSM into a tree structure, the translated tree
can be converted into equations. This involves two steps (Fig. 4): first,
the parent relationships are converted into an * or && operation (lines 9
to 10 in Fig. 4). Because the parent relationships indicate a path, if one
edge (transition) is unable to reach the next state, the remaining nodes
(states) cannot be reached, and thus, we use the * or && operation. In
the second step, the sibling relationships are converted into an+or ||
operation because, even when one edge (transition) is unable to reach
the next state in a sibling relationship, the other sibling edge (transi-
tion) may be able to reach it (lines 7 to 8 in Fig. 4). If the SA-FSM
transitions are Boolean, an A-FSM transition is converted using && and
||. Otherwise, if the SA-FSM transitions are expressed as a number be-
tween 0 and 1, the A-FSM transition is converted using the+ and *
operators. Fig. 7 shows an example of the conversion of a tree into an A-
FSM transition.

As shown in Fig. 7, there are two paths for reaching state 3: 0→1→3
and 0→1→2→3. There are several methods for determining the A-FSM
transitions. Assume that the SA-FSM transitions are expressed as Boo-
lean types. The A-FSM transition result is “true” when one of the two
paths is true. When both paths are “false,” the A-FSM transition result is
“false.” Therefore, if the A-FSM transition result is “true,” this implies

that there is at least one path that can reach state 3. Otherwise, we
assume that the SA-FSM transitions are expressed by integers 0 or 1.
The A-FSM transition result has several possible ways to reach state 3. If
both paths are true, the A-FSM transition result is 2. When only one
path is true, the A-FSM transition result is 1. Naturally, if the result is 0,
there is no path for reaching the state. Output can also be probability
values between 0 and 1; they reflect the possibility of reaching a spe-
cific state. Moreover, the adaptive state (state 6) is attached to a dis-
satisfied state (state 3) by the A-FSM definition (line15 in Fig. 2). Fi-
nally, after applying the abstraction algorithm at state 5 (lines 6 to 10 in
Fig. 2), an A-FSM can be extracted as Fig. 8.

We applied this abstraction method at the design-time part of the
proposed framework. As mentioned in Section 3.2.2, the abstraction
process requires a considerable amount of computing resources, but the
design-time process reduces this requirement when the software is
verified at runtime. Section 4.2 presents an evaluation of the proposed
abstraction method and its runtime efficiency.

3.3. RINGA runtime process

In the previous section, we described the design-time process of the
proposed framework for designing the SA-FSM and A-FSM. In addition,
designed models are used to validate self-adaptive software in each
MAPE loop at runtime. In this section, we describe how to validate self-
adaptive software using the runtime verification results. The runtime

Fig. 6. Finite state machine transformed into a tree structure and elimination of its iterations.

Fig. 7. Converting the tree into A-FSM transitions.
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process for the proposed framework consists of a MAPE loop, and de-
tails are provided in the following sections.

3.3.1. Monitoring
The monitoring process is responsible for data collection from the

environment and internal software changes. It also correlates the data.
The SA-FSM transitions were defined for monitoring data and triggers
when it was designed. Therefore, the monitoring process is responsible
for checking SA-FSM transition values at runtime.

3.3.2. Analyzing
The analysis process analyzes the symptoms related to adaptation

situations using the monitored data. The A-FSM transitions imply that
an adaptation point is reached; they consist of a combination of SA-FSM
transitions. Therefore, the analysis process calculates the A-FSM tran-
sitions, and deduces whether the software has reached and adaptation
point. Furthermore, A-FSM consists of precalculated results for SA-FSM
so it requires little computing power and completes quickly at runtime.

3.3.3. Planning
The planning process determines what is to be changed and how.

This process triggers an adaptive strategy when adaptation is required.
If the analysis process indicates that there is a reachable path to an
adaptation point, the planning process selects the related triggers de-
fined in SA-FSM. The selected triggers are then sent to the execution
process.

3.3.4. Executing
The executing process is responsible for activating the adaptive

strategies. Therefore, the planning process selects the triggers for
adaptation to the environment, and the execution process implements
them. As mentioned in the previous section, the proposed framework
assumes that software should be implemented with the referenced SA-
FSM, and thus a change in the transition values actually impacts the
software. Therefore, the execution process can implement the software
by changing the values of the trigger transitions.

4. Empirical evaluation

This section discusses a set of experiments for empirical evaluation
of the proposed self-adaptive framework, RINGA. We implemented a
prototype of RINGA using Java 1.8.0 to ensure compatibility with
various devices. This section consists of the design-time performance
and runtime performance tests. In RINGA, a designed finite state ma-
chine (SA-FSM) is generated as a runtime model (A-FSM) to reduce
verification time and computation at runtime. Moreover, the design-

time process is executed only once and does not impact at runtime
process. Therefore, we divided the evaluation into design-time and
runtime evaluation. The details are provided in the following sections.

4.1. Design-time performance

We randomly generated well-formed finite state machines for our
experiments. All the states have at least one in-transition connection,
with the exception of the initial state. The experimental data consists of
different state sizes with two out-transitions and one end-state. We
generated an experimental dataset to evaluate the worst case for the
proposed framework. Every state in the test cases has two transitions,
with the exception of the end state, which only has one in-transition.
Therefore, every transition has to be explored to obtain an A-FSM from
a SA-FSM.

The first experiment measures the time required to make A-FSMs
from the experimental finite state machine data set. The data set con-
sists of 20 states for each finite state machine, and we calculated the
mean of each data set. We executed the proposed method in different
hardware environments (two laptops, two desktops, one server and four
different Android phones). Table 2 lists the conditions of the different
hardware environments [26,27], i.e., CPU generation, number of cores,
and memory size.

The results obtained for increasing number of states are shown in
Fig. 9. More computation time is required when the number of states
increases. Naturally, environments with high computing power require
less calculation time. When the number of states is 45, only 9.3 s are
required for low computing power (i.e., the Galaxy S5). Moreover, there
is no difference between the environments when the number of states is
less than 30, but differences in performance occur for more than 30. In
addition, there are no significant differences between the high-power
computing devices (i.e., laptops, desktops, and the server) except for
the Intel® i7-2620M laptop because this technology at least two years
behind the other CPUs. However, the results show that high computing
power is suitable for design-time. Nevertheless, the design-time phase is
executed once before runtime and not until the finite state machine
changes. Therefore, it does not impact the execution verification at
runtime.

Furthermore, we performed similar experiments for different out-
transition numbers. We fixed the state size to 15 and increased the
transition size. We also generated the worst-case experimental data for
performing the proposed framework, as indicated earlier in this section.
The results of these experiments are shown in Fig. 10. Similar to the
previous results (Fig. 9), more computational time is required the when
the number of transitions increases. Moreover, high computing-power
environments require less calculation time.

The results of the design-time experiments suggest that, if the finite
state machine has several states and transitions and the running device
has low computing power such that the design-time process cannot be
calculated within a reasonable time, a high-computing power device
should be used to calculate the A-FSM for low computing-power

Fig. 8. Conversion of SA-FSM to A-FSM.

Table 2
Details of the hardware environments for measuring performance.

Hardware CPU Clock CPU Core RAM Operating
system

Laptop (Intel® i7-2620M) 2.7 GHz 2 8 GB Windows 7
Laptop (Intel® i5-5200 U) 2.2 GHz 2 8 GB Windows 10
Desktop (Intel® i5-4670) 3.4 GHz 4 16 GB Windows 10
Desktop (Intel® i5-6500) 3.2 GHz 4 8 GB Windows 10
Server (Intel® Xeon® E3-

1230 L v3)
1.8 GHz 4 4 GB Windows 10

Samsung Galaxy A8 1.8 GHz 8 2 GB Android 5.1.1
Samsung Galaxy S5 2.5 GHz 4 2 GB Android 5.1.1
Samsung Galaxy S7 2.6 GHz 8 4 GB Android 6.0.1
Samsung Galaxy Note 5 2.1 GHz 8 4 GB Android 6.0.1
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running device. In this way, the low computing-power running device
(e.g., mobile or IoT devices) can operate the MAPE loop by calculating
the A-FSM only at runtime.

4.2. Runtime performance

Self-adaptive software requires rapid verification at runtime to
adapt to a changing environment, and thus verification time is an im-
portant consideration [2,3]. In this section, we perform experiments on
runtime performance using the previous experimental data set. As we
mentioned earlier, the experimental data (i.e., SA-FSMs) consist of
different sizes of states or out transitions with one end node. Therefore,
experimental data (i.e., A-FSMs) for runtime consist of an initial node,
an end node, and an A-FSM transition (i.e., a transition with an equa-
tion form). Note that we consider various environment events (i.e.,

values of transitions) by random generation. Therefore, the results of
the experiment denote average values of different environment events.
However, different environment events do not have an impact on the
result of runtime performance. For example, in the case of an SA-FSM
that consists of 45 states and two transitions with 100 different en-
vironment events, the standard deviation is only 1.01ms. First, we
conducted the experiments on different devices and measured the time
required to calculate the A-FSMs extracted in the previous experiments.
Note that RINGA should consume little computing power in the runtime
process, because it calculates only the equations (i.e., →A-FSM of A-
FSM) at runtime. The results are shown in Figs. 11 and 12.

As the results show, more computation time is required when the
state and transition sizes increase because, as the state and transition
sizes of the finite state machine increase, the length of an A-FSM
transition also increases. Naturally, high computing power requires less

Fig. 9. Results of extracting A-FSMs with increasing number of states.
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time. However, all the devices calculate A-FSMs within a reasonable
time. Even low computing-power devices (e.g., Galaxy S5) require less
than 202ms with 45 states and 90 transitions. These experiments
suggest that the runtime of the proposed framework is suitable for low
computing devices such as mobile phones after the design-time process
is complete.

To demonstrate the performance of the runtime process of the
proposed framework, we compared the proposed method with two
model checking tools that use a finite state machine to express the
system model: NuSMV [28–31] and CadenceSMV [32]. These tools,
which are powerful tools used in the model verification area, are
symbolic model checkers, and they are provided as open source.
NuSMV and CadenceSMV are limited to Linux and Windows operating
systems, and thus, we performed the experiments using the Intel® i7-
2620M laptop. We obtained A-FSMs that contain paths from the start to

end state by performing a design-time process. Therefore, we measured
the time required to achieve reachability from the start to end state
using NuSMV and CadenceSMV. Using the intuitive semantics of tem-
poral modalities [4], reachability is

= ∃ ♦σ endstate (4)

where σ indicates that there is a path that eventually reaches the end
state. To calculate σ, NuSMV and CadenceSMV obtain a path from the
start to end states. The results of the runtime performances are com-
pared in Figs. 13 and 14. As the results indicate, the proposed method is
better than the path finding (i.e., reachability) of both NuSMV and
Cadence SMV. These tools differ from the proposed method when the
state and transition sizes increase. NuSMV and CadenceSMV experience
a monotonic change with increasing states and transitions because they
terminate model checking when they find a path that reaches a specific

Fig. 10. Results of extracting A-FSM with increasing number of transitions (15 states).
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state, as shown in Eq. (4). Therefore, NuSMV and CadenceSMV only
provide a single path for reaching the end state, but the proposed
method can consider several cases for reaching the end state. In addi-
tion, the proposed method is faster than the other tools. Naturally, the
proposed method has a precomputation process for converting the SA-
FSM into an A-FSM. Nevertheless, the proposed method saves time at
runtime when considering several model-checking cases.

5. Proof of concept: self-adaptive light control

In this section, we describe an example application to help under-
stand the proposed method: self-adaptive light control. The example
uses a simple IoT concept, and thus there two devices: a smartphone
that contains the user requirements, control connections, and proposed
MAPE loop, and an Arduino-based light control device with a wireless
network module. The implemented application and device were

simulated using six scenarios. The results of the scenarios show that the
proposed RINGA framework can be applied at runtime. In Section 5.1,
we provide the details of the proposed example application and its
scenarios. In Section 5.2, we explain how the application and light
control device were implemented. In Section 5.3, we show the simu-
lation results of the six scenarios.

5.1. Example application: self-adaptive light control

5.1.1. Overview of example application
In this simple example application, there is a lamp with an illumi-

nation sensor, wireless communication module, and adjustable bright-
ness controller. A user can set the lamp brightness through the mobile
device. When the mobile device is connected to the lamp, it checks the
user brightness requirements. Subsequently, the mobile device collects
data from the environment and internal software changes, for example,

Fig. 11. Results of calculating A-FSM with increasing number of states.
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the illumination intensity, available sensor list, and requirements. After
monitoring, the mobile device analyzes the monitored data and eval-
uates the adaptive strategies needed to satisfy the user requirements. If
there are strategies that satisfy the requirements, the mobile device
controls the related devices. However, if the mobile device loses its
connection or requires more data, it attempts to reconnect or checks the
monitoring data again. Fig. 15 shows an overview of the proposed ex-
ample application.

In the example application, we assume that the user does not want
sudden illumination changes, so the illumination should be changed
gradually. However, there are two points for checking for adaptability:
satisfaction of the user requirement and robustness to broken sensors.
Based on these two checkpoints, we created six scenarios to measure
the adaptability of the proposed example application:

• Scenario #1: The light controller adapts the external light to satisfy
the user's requirement and starts with no connection. The external

lights are fixed and do not change.

• Scenario #2: The light controller adapts the external light to satisfy
the user's requirement. The external light suddenly becomes darker.

• Scenario #3: The light controller adapts the external light to satisfy
the user's requirement. The external light suddenly becomes
brighter.

• Scenario #4: The light controller adapts the external light to satisfy
the user's requirement, and the illumination sensor is suddenly in-
operative during the adaptation process. The external light is fixed
and does not change.

• Scenario #5: The light controller adapts the external light to satisfy
the user's requirement with a broken illumination sensor. The ex-
ternal light suddenly becomes brighter.

• Scenario #6: The light controller adapts the external light to satisfy
the user's requirement with a broken illumination sensor. The ex-
ternal light suddenly becomes darker.

Fig. 12. Results of calculating A-FSMs with increasing numbers of transitions.
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Based on the example application and scenarios, we design the SA-
FSM and A-FSM in Section 5.1.2. Moreover, we implement the appli-
cation and light control devices in Section 5.2.1. The results of the
scenarios are described in Section 5.2.2.

5.1.2. Modeling of finite state machine
To simulate the proposed framework, we design an SA-FSM based

on the example application described in Section 5.1.1. Before designing
the SA-FSM, we build the rule-based finite state machine as a plan. We
use the term “plain finite state machine” to refer to the plan for a finite
state machine for building the SA-FSM. Therefore, a plain finite state
machine is intuitive and simple; it consists of only two state types (i.e.,
normal and end state) and directed transitions. We design a finite state

machine that contains a single loop for the example application. Before
designing the finite state machine, we classify necessary conditions and
user requirements for satisfying the example application. The necessary
conditions represent the operational conditions under which the ap-
plication can operate normally. In addition, the requirements indicate
that the application satisfies the requirements of the user. A plain finite
state machine is designed with the necessary conditions and user re-
quirements. Fig. 16 shows the designed plain finite state machine with
23 states and 29 transitions. The necessary conditions and related states
are listed below:

• Necessary condition #1: a wireless network connection between the
devices and power check (states S0 to S5, S7, and S8)

Fig. 13. Results of runtime comparison with increasing numbers of states.

Fig. 14. Results of runtime comparison with increasing numbers of transitions.
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• Necessary condition #2: the sensor value is readable (states S9 to
S12)

• Necessary condition #3: the light is controllable (states S14 to S19)

The user's requirement and related states are below:

• Requirement #1: the application is shut down when the user wants
to end it (states S5 and 6)

• Requirement #2: the user's desired light intensity is satisfied (states
S13 to S20)

In this finite state machine, we omit details of the operation to
prevent it from becoming too complex. For example, we omit the details
of the reconnection process in states S3 and S4. The finite state machine
has states for potential problems: losing a connection (state S2), a
broken sensor (state S10), and brightness control (states S15 and S17).
These three states are connected to the S22 (error) state. In addition,
there are three end states: S6 and S20 are the states that end with a
satisfied requirement, and S22 is the end state in which the requirement
is not satisfied. The other states have their own operation, and the
details are shown in Fig. 16. Note that building the plain finite state
machine is not an essential process in RINGA. We build the plain finite
state model to better understand the SA-FSM design (e.g., as a plan),
and it is not needed if SA-FSM is designed immediately. We also want to
show the possibility that a rule-based finite state machine can be
transformed into an SA-FSM.

We design an SA-FSM from the plain finite state machine based on
the definition in Section 3.2.1. First, we divide the states into four types
(normal, satisfied, dissatisfied, and adaptive).

A satisfied state is an end state set where the software requirements
are satisfied. Therefore, if the software reaches this state, it terminates
normally; therefore, we select S6 (shutdown) and S20 (satisfy require-
ment). Because, S6 satisfies requirement #1 (e.g., user shutdown), and
S20 satisfies requirement #2 (e.g., light intensity satisfied). After se-
lecting a satisfied state, we change these states to end states. A dis-
satisfied state is an end state set in which the software requirements are
not satisfied. Therefore, if the software reaches this state, it terminates
abnormally. This type of state indicates that the software needs to be
adapted, and thus after this state, an adaptation trigger is required.

Therefore, we chose states that do not satisfy the user requirements and
necessary conditions of the application. States S2 (connection lost) and
S10 (disable sensor) violate necessary conditions #1 and #2. Further,
S15 (natural light) and S18 (poor resource) may possibly violate re-
quirement #2 and necessary condition #3. Therefore, these states
containing potential failures are classified as dissatisfied states as they
change the end states (S2, S10, S15, and S18). An adaptive state is a state
in which adaptive activity is performed. If the software reaches this
state, the related adaptive strategy is triggered. A dissatisfied state must
connect to an adaptation trigger by definition. Therefore, states that are
connected to dissatisfied states and contain adaptation triggers are se-
lected as adaptive states. State S3 (attempt to check) is connected to S2
and is an adaptive strategy for condition #1. State S11 (check available
sensor) is connected to S10 and is an adaptive strategy for condition #2.
State S16 (reduce light) and S19 (increase light) are connected to S15
and S18, and these are adaptive strategies of requirement #2.
Therefore, S3, S11, S16, and S19 are adaptive states. Before selecting
the normal states, we delete states that lose connections, thus the S22
(error) state is deleted. State S22 was an end state to notify the user of
an error, but connected states are translated as end nodes (dissatisfied
states). Thus, that state loses all connections to reach itself and is de-
leted. A normal state is a state that does not impact software adaptation.
Therefore, the remaining states are determined to be normal states (S0,
S1, S4, S5, S7, S9, S12, S13, S14, and S17).

After selecting the states types, we remove and adjust the transition
types. Transitions e3, e13, e20, and e25 are removed. Because S2, S10,
S15, and S18 are both end states and dissatisfied states, there is no reason
to connect them to S22. Moreover, some transitions are changed to
adaptive transitions. The adaptive transition connects dissatisfied states and
adaptive states by definition. Therefore, these transitions become
adaptation triggers (e2, e14, e21, and e26). The other transitions are
labeled as normal transition. Fig. 17 shows the SA-FSM design from the
plain finite state machine for the light control application.

The normal, satisfied requirement, dissatisfied requirement, and adap-
tive states are represented by white, green, red, and blue circles, re-
spectively. A dissatisfied state is connected to the adaptive state. The
adaptive state is not reached when the adaptive transition is not operable.
A normal transition is represented by a solid arrow, and an adaptive
transition is represented by a dotted arrow.

Fig. 15. Overview of self-adaptive light control ex-
ample application.

Fig. 16. Plain finite state machine for light control scenario.
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Table 3 lists the data-related transitions and triggers to be mon-
itored.

After determining the finite state machine and monitoring data, we
extract the A-FSM from the SA-FSM, as depicted in Fig. 18. The A-FSM
defines an initial state as a connected satisfied state and a dissatisfied
state as an A-FSM transition. Therefore, the A-FSM transition is ex-
tracted in the form of equations and connects related states. The initial
state connects satisfied states (R0, and R1) and dissatisfied states (E0,
E1, E2 and E4). Further, each dissatisfied state is connected to at least
one adaptive state (trigger transition).

5.2. Implementation

To show the efficacy of the proposed framework at runtime, we
implemented an Arduino-based lamp that uses Bluetooth communica-
tion to control the lamp's brightness (Section 5.2.1). We also im-
plemented an Android application to control the self-adaptive lamp
using the proposed framework (Section 5.2.2).

5.2.1. Arduino implementation
The pseudo-code for the Arduino-based lamp with simple functions

is listed in Fig. 19. First, the lamp connects to the host device (line 7). In
the example application, this is an Android phone. After connection, the
lamp senses the illumination intensity (line 11), and then it sends this
value to the host device (line 12). Then, the lamp receives an output
value from the host device to adjust the illumination (line 15). Finally,
the lamp adjusts its illumination based on the output value from the
host device (line 16). This process continues every 100ms until the host
device sends a shutdown message (lines 9 and 19). The reason for the
100ms delay (line 22) is that an Arduino board (Bluno board 2.0)
cannot handle data if the host device sends data too quickly.

Table 4 lists the hardware components required for implementing
the lamp, and Fig. 20(a) shows a deployment of the components using

the Fritzing tool [33]. We used a Bluno board 2.0, which is a micro-
controller board based on the Arduino Uno [34,35] and is integrated
with a Bluetooth 4.0 module. (Fig. 20(a) does not show the Bluetooth
module.) We deploy two illumination sensors to detect broken sensors.
If two sensor values are significantly different, the host device de-
termines that one of the sensors is broken. We use LED strips that
consist of 45 LED lights to adjust the illumination. An LCD panel is
deployed to show the lamp status. The brightness of the LED strips and
LCD are amplified by a transistor. We also use a button with a 10-kΩ
resistor to force termination. Fig. 20(b) shows a prototype of the lamp.

5.2.2. Android application
We implemented an Android 5.1.1 application for the proposed

design, which consists of the proposed MAPE loop. Fig. 21 shows the
pseudo-code for this application. The entire process consists of a design-
time process (lines 4 to 5) and MAPE loop (lines 7 to 20). The mon-
itoring data and triggers are first mapped to an SA-FSM (line 4), which
is abstracted to A-FSMs using the method described in Section 3.2 (line
5), and then the MAPE loop starts (line 7). During the monitoring
process, the application collects monitoring data values and triggers
(line 9). During the analysis process, the application calculates equa-
tions (i.e.,→A-FSM of A-FSM) extracted during design-time (line 12), and
then the trigger is selected during the planning process using the results
of the analysis process (line15). During the execution process, the ap-
plication executes the triggers and displays its status. Then, the MAPE
loop continues until the user shutdown message is received (line 7).
Note that the lamp application processes data in 100ms intervals, but
the Android application process the MAPE-loop without delay. In ad-
dition, as mentioned in Section 5.1.1, we assume that the user does not
want sudden illumination changes; hence, we change the illumination
gradually. Although it depends on the environment, the illumination
change is approximately under 10 lx.

We map the functions to the transitions in Table 3. If the trigger
changes a transition value, the related function runs. For example, if the
trigger indicates that value t2 is “true,” the application runs the func-
tion that sends a light-reduction message to the lamp. The application
has a single activity view, and Fig. 22 shows a runtime screenshot,
where the current illumination value appears at the top. The Bluetooth
connection can be checked on the left button, and the shutdown button
is on the right. The user requirement is entered between the connection
check and shutdown buttons. In this screenshot, the user requirement is
set to level 4 (400–600 lx). The “Now status” can be checked in the red-
colored box. The bottom of the application displays the log data for the
sensor value, previous lux, light output value, time, and A-FSM tran-
sition results.

Fig. 17. SA-FSM for light control example application.

Table 3
Monitoring data and triggers.

Type Data to be monitored Related transitions

Monitoring data Success or failure of the Bluetooth
connection

e1, e4

User shutdown command e5, r0
Sufficient power condition e6, e7
Check sensor operation e8, e11
Illumination value r1, e12, e15

Triggers Availability of Bluetooth network t0
Check assistance sensor t1
Light output value t2, t3
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5.3. Results of the example application

We performed a simulation with the Android application and
Arduino lamp based on the defined scenarios. Figs. 23–27 show the
results for each scenario, where we set the user-required illumination
intensity to a range between 220 and 280 lx. The blue area indicates
that the user requirement has been satisfied and the system is operating
normally. The red area indicates that the user requirement is not sa-
tisfied, and thus, the system needs to adapt to changes in the environ-
ment. Every result shows the environmental light levels and adapted
light levels, which are controlled by the self-adaptive lamp. These il-
lumination intensity results infer that the proposed method adapts to
changes in the environment. As mentioned earlier, we assume that the
user does not want sudden illumination changes, so the illumination is
increased or decreased in steps of 10 lx when an adaptation is needed
(Sections 5.1.1 and 5.2.2). Therefore, it appears that all the scenarios
take time to satisfy a user's illumination requirement when in the dis-
satisfied states (E3 and E4). However, the application is continually
executing adaptation actions (A2 or A3) in states E3 or E4.

Fig. 23 shows the results of scenario #1. This scenario requires
adaptation to a monotonic environment change and Bluetooth con-
nection. Therefore, the external light is fixed from 30 to 40 lx, and the
application starts with no connection. In the first stage (0–1.3 s), the
application calculates the equations (i.e., →A-FSM of A-FSM in Fig. 18),
determines that the system state is E0 (connection lost), checks t0
(Bluetooth available), and attempts to reconnect to the lamp. After
connection is achieved in the second stage (1.4–3.9 s), because a user
requirement was not inputted, the application determines that the
system state is R0 (shutdown) from the results of A-FSM. After the user
requirement is input (4–8.3 s), the application determines that the
system state is E4 (poor resource), and the application checks t1 (light
can be increased). In this situation, the application continually triggers
A3 (increase light) until the user requirement is satisfied. In the last
stage (8.4–11.8 s), the user illumination requirement is satisfied, and
the A-FSM result shows that the system state is R1 (satisfied require-
ment).

Fig. 24 shows the results of scenario #2. This scenario is needed for
adapting to a sudden decrease in external illumination. As shown in
Fig. 24, the environment's illumination suddenly decreases from 260 to
60 lx over 1.3 s. Therefore, the application goes from state R1 (satisfied

Fig. 18. A-FSM for the light control example application.

Fig. 19. Pseudo-code for the lamp.

Table 4
List of lamp components.

Number Component name Description

1 Bluno board 2.0 [35] Microcontroller board with Bluetooth 4.0
module

2 Illumination sensor Senses the intensity of illumination
3 Transistor Amplifies the electrical power to adjust LED

and LCD brightness
4 LED strips Brightens the lamp
5 LCD module Shows lamp status
6 Button Forces termination
7 Resistor Provides resistance
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requirement) to E4 (poor resource) from the results of A-FSM. Fur-
thermore, the application checks t3 (light can be increased) and triggers
A3 (increase light). The application operates adaptation state A3 until
the user requirement is satisfied.

Fig. 25 shows the results of scenario #3. This scenario is needed for
adapting to a sudden increase in the external illumination. As shown in
Fig. 25, the environment's illumination suddenly increases from 64 to
271 lx over 1.2 s. Therefore, the application goes from state R1 (sa-
tisfied requirement) to E3 (natural light) from the results of A-FSM.
Furthermore, the application checks t2 (light can be reduced) and
triggers A2 (reduce light) continually until the user requirement is sa-
tisfied. The application operates adaptation state A2 until the user re-
quirement is satisfied (after 3.6 s).

In scenario #4, the application needs to adapt to a monotonic il-
lumination change and broken illumination sensor. Fig. 26 shows that

the lamp sensor does not work at 2.3 s, and thus, the application de-
termines that the system state is E1 (disabled sensor) by result of A-
FSM. Subsequently, the application checks t1 (available sensor exists).
In this case, the smartphone (Galaxy A8) has an illumination sensor,
and therefore the application triggers the adaptive states A1 (check
available sensor) and A1–0 (connect new sensor). The disabled illumi-
nation sensor is not revealed after 2.3 s, and thus the results after 2.3 s
are based on the secondary illumination sensor built in the phone. As
shown in Fig. 26, the application performs an adaptation process from 0

Fig. 20. Components for lamp deployment
and lamp prototype for proposed design.

Fig. 21. Pseudocode of light control application.

Fig. 22. Screenshot of the application at runtime.
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to 4.2 s, even though the illumination sensor is broken.
In scenario #5, the application needs to adapt to a sudden increase

in external light. As described above, Fig. 26 shows that the illumina-
tion sensor is broken at 2.3 s, and thus, the application uses the sec-
ondary sensor built in the phone. The system satisfies the requirement
from 4.3 to 9.2 s, but the external light suddenly increases at 9.3 s;
therefore, the application determines that the system state is E3 (nat-
ural light). Subsequently, the application checks t2 (light can be

reduced) and triggers A2 (reduce light) continually until 11.8 s.
Fig. 27 shows the results of scenario #6. This scenario is needed for

adaptation to a sudden decrease in the external illumination with a
broken illumination sensor. As shown in Fig. 27, the environment il-
lumination suddenly decreases from 139 to 58 lx at 5.6 s. Furthermore,
the lamp's illumination sensor does not work at 1.3 s. In this instance,
the application determines that the system state is E1 (disabled sensor)
from the results of A-FSM, and checks t1 (available sensor exists). Then,

Fig. 23. Results of scenario #1.

Fig. 24. Results of scenario #2.
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the application adapts using the illumination sensors built into the
phone. After adapting for E1 (disabled sensor), the application con-
tinues the adaptation process to resolve E4 (poor resource). The ap-
plication checks t3 (light can be increased) and triggers A3 (increase
light) until 7.1 s. Finally, the system adapts to the environment changes
after 7.2 s.

The results of these scenarios show that the proposed framework

performs reasonably well with regard to adaptiveness to various en-
vironment changes. Overall, the results of the scenarios show the
practical usability of the proposed self-adaptive framework at runtime.

6. Discussion

In this section, we describe assumptions for software conditions of

Fig. 25. Results of scenario #3.

Fig. 26. Results of scenario #4 and #5.
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RINGA. Furthermore, the limitations of RINGA and future work to
overcome these limitations are described.

6.1. Assumptions for software conditions of RINGA

In this section, we describe assumptions for the software conditions
that can be applied to RINGA, given the experimental results and lim-
itations of the proposed approach. RINGA can be applied to software
when

• the software is described as a finite state machine

• the software environment can be predictable, but its changes are not
predictable at runtime

• fast analysis, planning, and execution are needed to adapt to en-
vironmental changes

• low computing power is available for verifying software at runtime

In this paper, we proposed a finite state machine (SA-FSM) to de-
scribe self-adaptive software. Thus, to apply the proposed approach, the
software needs to be modeled as finite state machine. Further, the en-
vironment in which the software is executed should be predictable at
design time, but its changes should not be predictable at runtime be-
cause the design of SA-FSM needs to contain strategies to adapt to
environment changes. RINGA can adapt to environment changes even
in devices with low computing power and has fast verification at run-
time (Section 4.2). Moreover, we performed an experiment with a finite
state machine consisting of less than 45 states and the extraction time of
A-FSM grew exponentially (Section 4.1). Hence, the state number of
designed finite state machine is restricted under 45 states for software
stability. However, we assume that RINGA can be applied to more
complex finite state models, if the predesign process is extended to
optimize A-FSM. Moreover, in this paper, we only implemented a
prototype of RINGA. However, we have a plan to implement a stable
version to support the self-adaptive software development process.

6.2. Validity threats

In this section, we discuss the validity of the proposed framework
for generalization. First, we performed the experiment with several
cases of randomly generated well-formed finite state machines. These
experimental finite state machines are used to evaluate design-time and
runtime performance. We consider the experimental data to evaluate
the worst case for the proposed method. In the experimental data set,
every transition must be explored to abstract A-FSM from SA-FSM;
therefore, abstraction results (i.e., →A-FSM) are also complex equation
forms. The experimental results show that the proposed method is ef-
ficient at runtime. However, the experiment was conducted with lim-
ited states and transitions because it is not feasible to execute large-
scale finite state machines in a mobile computing environment.
Naturally, a high computing environment (e.g., workstation and server)
can handle large-scale finite state machines than a mobile computing
environment. Nevertheless, the high computing environment also has
limitations in processing very large-scale finite state machines.
Therefore, it is needed to process large-scale finite state machines for
applying large-scale software. We discuss this problem in detail in the
next section.

The other validity threat is related with the exemplar of the paper.
We described an example application to show that RINGA can be ap-
plied to self-adaptive software at runtime. The exemplar uses a simple
IoT scenario, and there are two devices (smartphone and light control).
The exemplar simulated six scenarios, and the scenario results showed
that RINGA can be adapted to various environment changes. However,
the IoT environment is connected to various devices; therefore, the
environment is more complex than the exemplar. In addition, other self-
adaptive software environments will need more complex finite state
machines if RINGA is applied. Therefore, the exemplar validates that
simple software can be applied to the proposed framework, but large-
scale software should be carefully approached. To address large-scale
self-adaptive software, the proposed framework should improve the
design of finite state machines. We discuss this limitation and future
work in the next section. Finally, the experiment and the exemplar

Fig. 27. Results of scenario #6.
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validate that the proposed framework can be applied to self-adaptive
software at runtime; however, the framework needs improvement to be
applied to large-scale software.

6.3. Limitations and future work

In this paper, we proposed the design of self-adaptive software
based on finite state machines, and verified the design of self-adaptive
software using a model-checking methodology at runtime. Moreover,
we proposed finite state machines (SA-FSM and A-FSM) for this design.
Even though the proposed approach yielded excellent experimental
results, there are several problems to be solved before moving forward.

The first limitation is the complexity of a designed model. It is
difficult to apply the proposed model to large-scale self-adaptive soft-
ware. If a software design requires many states and transitions, it would
be difficult to design using the proposed finite state machine models. To
solve the complexity of designed model, we plan to improve finite state
machine design. One idea is the division and integration of the finite
state model. The idea is that the overall design of the finite state ma-
chine is divided into small parts, and each part is described as an SA-
FSM. The partially designed finite state machines are then integrated
into one SA-FSM. In addition, if this idea is possible, we assume that it
would be possible to add, change, and delete finite state models in a
predesigned model. Therefore, this idea can extend RINGA as in-
crementally expandable framework.

The second limitation is the increased computing power needed for
the abstraction algorithm. To verify the self-adaptive software at run-
time, the designed finite state model is abstracted in the form of
equations that contain the extracted paths to reach adaptive (Sadaptive)
and dissatisfied (Sdis) states in the design-time phase (Section 3.2.3).
However, as the number of states or transitions increase, the abstraction
(precomputing) and runtime process time grow exponentially
(Sections 4.1 and 4.2). One reason for this is that the abstraction al-
gorithm explores all possible ways to reach the adaptive and dissatisfied
states. The other reason is that the length of an A-FSM transition also
increases when number of states or transitions increase, so more com-
puting is needed to calculate the larger A-FSM. These limitations also
make it difficult to apply the proposed approach in large-scale software.
Further, if a designed finite state machine is changed, the abstraction
process is repeated, and this can consume computing resources. As
mentioned above, we plan to improve the model of RINGA using the
division and integration of finite state machines. In this idea, parti-
tioned models partially perform the abstraction process. After the ab-
straction process of the partitioned models, each abstracted result can
be merged as one abstracted result. We assume that it could reduce the
abstraction process time by reducing overlapping calculations.

The other limitation is the limited expressiveness of the current
RINGA requirements. RINGA involves requirements pertaining to the
design of the SA-FSM, and the description of specific requirements is
limited, for example, to time expressions, bounded iteration, and so on.
Therefore, RINGA needs to express requirements related to time. To
address the expression of time-related requirements, we plan to use
linear temporal logic (LTL) to express requirements. LTL is a temporal
logic model for modalities referring to time [21]. Rigorous rules are
needed to apply LTL in RINGA. Moreover, the abstraction algorithm
needs to be extended because RINGA currently only considers the

reachability of the finite state machine. Therefore, it is necessary to
develop an abstraction algorithm to express LTL with respect to time
(e.g., “next” and “until”). Moreover, it could be possible to apply pre-
vious research to express requirements. For example, Nicolás et al.
[36,37] proposed an approach to synthesize live behavior model. They
applied labeled transition systems as models to describe the event based
model, and fluent LTL to describe specifications. Their research pro-
duces a liveness model by considering the liveness assumption for the
behavior of the environment and models a liveness goal for a system
and the satisfaction of the system goal.

7. Conclusion

In this paper, we proposed a self-adaptive software framework with
a finite state machine design and verification at runtime. The proposed
framework has two parts: design-time and runtime. The design-time is
responsible for designing the self-adaptive software with a finite state
machine and precomputing it for runtime verification. To design self-
adaptive software, we proposed SA-FSM, which is abstracted for run-
time verification using an abstraction algorithm as A-FSM. A-FSM is
used to verify the self-adaptive software at runtime. The runtime pro-
cess is responsible for verification using the precomputed finite state
machine (A-FSM) in a MAPE loop. We performed an empirical eva-
luation and implementation using an IoT-based example application.
The empirical evaluation compared the proposed framework with two
symbolic model checkers, and the results showed that, although the
proposed method has a precomputation process, it saves time at run-
time by considering several model-checking scenarios. Furthermore, we
implemented Android and Arduino applications to measure its adapt-
ability in a real environment. We proposed a simple IoT-based example
application for adapting to illumination changes. We tested our method
with six scenarios, and the results showed that the proposed framework
can adapt to real environments. Moreover, we discussed the limitations
of the proposed approach, and described future work for solving the
discussed limitations.

For the future, we plan to extend our method to improve our finite
state model and abstraction process. To improve model design, we will
apply LTL. We assume that it will produce rich requirement expressions
at design time. Moreover, to improve the abstraction algorithm, we
plan to develop the designed finite state model in parts. We assume that
if a finite state model can be abstracted and merged, the abstraction
performance will be improved. Moreover, the partial model has the
potential to expand the self-adaptive software incrementally. Finally,
we will demonstrate the proposed approach in a complex IoT en-
vironment that consists of multiple devices.
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ANNEX. Acronyms

Acronyms Full definition

A-FSM Abstracted Finite State Machine
INVEST Incremental VErification Strategy
IoT Internet of Things
ISM Interactive State Machine
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MAPE Monitoring-Analyzing-Planning-Executing
NuSMV New Symbolic Model Checker
RINGA Runtime verIfication with fiNite state machine desiGn for self-Adaptation software
SA-FSM Self-Adaptive Finite State Machine
SMV Symbolic Model Checker
SOTA State of the Affairs
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